In situ microscopy labs

3121-J Eng. V

Dept. Materials Science and Engineering

University of California Los Angeles

410 Westwood Plaza, Los Angeles, CA 90095

 

Phone: 310-206-8174;   Fax: 310-206-7353;   kodambaka@ucla.edu

Last modified: 01/14/2010

Thank you for visiting!

You are visitor #

Recent publications

2D (Graphene)

1. S.-Y. Kwon, C.V. Ciobanu, V. Petrova, V.B. Shenoy, J. Bareno, V. Gambin, I. Petrov, and S. Kodambaka, Growth of Semiconducting Graphene on Palladium, Nano Lett. 9, 3985 (2009).

 

1D (Nanowires)

1. C.-Y. Wen, M.C. Reuter, J. Bruley, J. Tersoff, S. Kodambaka, E.A. Stach, and F.M. Ross, Formation of compositionally abrupt axial heterojunctions in Si/Ge nanowires, Science 326, 1247 (2009).

2. R.L. Woo, L. Gao, N. Goel, M.K. Hudait, K.L. Wang, S. Kodambaka, and R.F. Hicks, Kinetic Control of Self-catalyzed Indium Phosphide Nano - Wires, Cones, and Pillars, Nano Lett. 9, 2207 (2009).

3. B.J. Kim, J. Tersoff, S. Kodambaka, M.C. Reuter, E.A. Stach, and F.M. Ross, Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth, Science 322, 1070 (2008).

4. S.V. Prikhodko, S. Sitzman, V. Gambin, and S. Kodambaka, Electron backscattered diffraction of individual GaAs nanowires, Ultramicroscopy 109, 133 (2008).

5. S. Kodambaka, J. Tersoff, and F.M. Ross, Ge nanowire growth below the eutectic temperature, Science 316, 729 (2007).

 

0D (Nanocrystals)

1. L. Chen, Z. Song, S.V. Prikhodko, J. Hu, S. Kodambaka, and R. Richards, Three-Dimensional Morphology Control During Wet Chemical Synthesis of Porous Chromium Oxide Spheres, ACS Applied Materials & Interfaces 1, 1931 (2009).

Suneel Kodambaka

Assistant Professor

Our group is broadly focused on the synthesis and characterization of low-dimensional (0D, 1D, & 2D) transformational materials such as graphene and nanowires and nanocrystals of metals, refractory ceramics, and semiconductors for applications in:

* Aerospace

* Catalysis,

* Energy storage/harvesting, &

* Nanoelectronics industries.

Specific emphasis is on the fundamental understanding of morphological, structural, and compositional evolution in these materials. To this purpose, we use a variety of in situ as well as ex situ characterization tools such as variable-temperature scanning/transmission electron microscopies (SEM/TEM), low-energy electron microscopy (LEEM), and scanning probe microscopies (STM/AFM).